The active FMR1 promoter is associated with a large domain of altered chromatin conformation with embedded local histone modifications.
نویسندگان
چکیده
We have analyzed the effects of gene activation on chromatin conformation throughout an approximately 170-kb region comprising the human fragile X locus, which includes a single expressed gene, FMR1 (fragile X mental retardation 1). We have applied three approaches: (i) chromosome conformation capture, which assesses relative interaction frequencies of chromatin segments; (ii) an extension of this approach that identifies domains whose conformation differs from the average, which we developed and named chromosome conformation profiling; and (iii) ChIP analysis of histone modifications. We find that, in normal cells where FMR1 is active, the FMR1 promoter is at the center of a large ( approximately 50 kb) domain of reduced intersegment interactions. In contrast, in fragile X cells where FMR1 is inactive, chromatin conformation is uniform across the entire region. We also find that histone modifications that are characteristic of active genes occur tightly localized around the FMR1 promoter in normal cells and are absent in fragile X cells. Therefore, the expression-correlated change in conformation affects a significantly larger domain than that marked by histone modifications. Domain-wide changes in interaction probability could reflect increased chromatin expansion and may also be related to an altered spatial disposition that results in increased intermingling with unrelated loci. The described approaches are widely applicable to the study of conformational changes of any locus of interest.
منابع مشابه
P-204: Evaluation of FMR1 Gene Regulatory Region for The Epigenetic Mark of H3K9 Acetylation in Blood Cells of Patients with Diminished Ovarian Reserve Reffered to Royan Institute
Background: Diminished ovarian reserve (DOR) is a heterogeneous disorder causing infertility, characterized by a decreased number of oocytes and high FSH level, the genetic cause of which is still unknown. The association between FMR1 premutations(50-200 CGG repeats) and the premature ovarian failure( POF) disease has suggested that FMR1 gene acts as a risk factor for POF and recently for DOR p...
متن کاملP-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction
Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...
متن کاملO-5: Reprogramming of Paternal DNA Methylome during Spermiogenesis
Background Chromatin of male and female gametes undergoes a number of reprogramming events during the transition from germ cell to embryonic developmental programs in the zygote. This process involves reorganisation of the patterns of 5-methylcytosine (5mC), a DNA modification associated with regulation of gene activity. Notably, both maternal and paternal genomes undergo Tet3-dependent oxidati...
متن کاملP-209: Decreased Expression of Histone Acetyltransferase CDY1 Gene in Testis Tissue May Lead to Decreased Expression of Transition Protein (TNP) and Protamine (PRM) Genes,Causing Male Infertility
Background: Infertility is a complex medical problem. About 15% of couples are infertile, and male infertility being involved in roughly 50% of the cases. Among these, many cases are associated with a severe impairment of spermatogenesis. During the last stage of spermatogenesis (spermiogenesis), sperm chromatin endures complex modifications in which histones are lost and depositioned with tran...
متن کاملThe effect of aspirin on the interaction of histone 05 and 05-DNA
The linker histones (H1 or H5) which play a key role in the folding of chromatin, are general repressors of gene expression. Nuclei of the mature chicken erythrocytes (and in some mammalian cells) contain both of them. Although the interaction of H5 with DNA is stronger than that of H1, it does not prevent the transcription of some erythroid-specific genes. It has been shown that some modificat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 33 شماره
صفحات -
تاریخ انتشار 2006